The Hand as a Marionette

Twenty-seven small bones give shape and sturdiness to the hand. You can feel them right underneath the covering of skin, although the pebble-bones in the base of the hand all fit neatly together and from the outside just feel like one big block of bone. In fact, the hand is almost entirely bone, except for the skin covering and a few blobs of muscle and padding. But what are these wires that keep popping out underneath the skin? You can feel a few of them running lengthwise along the top of the stick-bones in the back of the hand. They pop from side to side as you run your fingers across the back of your hand, and they really get taut and pop out when you try to draw your fingers back. There is one running down into the wrist from each finger, along the top of each hand-bone (metacarpal). There are similar wires at the base of the thumb, and they tighten whenever you try to draw your thumb back.

Tendons in the back of the hand.

Tendons in the back of the hand.

Just as there is a cord in the back of the hand for each finger, so there are corresponding cords in the palm of the hand, although they are buried under padding and are harder to find, and they tighten up whenever you clench your fingers. There are also numerous cords running through the wrist. Some of these cords become especially pronounced when you try to draw your wrist forwards.

Tendons in the palm and wrist.

Tendons in the palm and wrist.

All of these wires are called tendons, which apparently derives from a Greek noun meaning “sinew”, which in turn derives from a Greek verb meaning “to stretch”. They evidently function as drawstrings for the hand, because they tighten and pop up whenever you try to make a motion with the hand. We can’t really test this idea by separating a human hand and pulling on the tendons from the outside, but there is something much like a detached human hand, with tendons sticking out, that is cheap and readily available…

Chicken Feet

Chicken feet are apparently popular in certain ethnic cuisines. I buy mine pre-packaged at a local Chinese supermarket. They provide a wonderful analog to the human hand–they have one fewer “finger” than a human hand, but they have very human-looking digits, with knuckles, and the claws even look like fingernails. Furthermore, the severed tendons are exposed at the cut, allowing us to pluck them and see what happens.

(Depending on exactly how the butcher separated the foot from the rest of the chicken, the tendons might be sticking out obviously, or you might have to dig a little bit with tweezers, and the bone might be cleanly cut with a tubular end, or it might be crushed with fragments sticking out. Bone fragments may resemble tendons at a casual glance, except they will be crunchy instead of limp. In a very cleanly cut leg, you should be able to find a tubular bone, with tendons on the upper side that cause the toes to extend, and tendons on the underside that cause the toes to curl. When I demonstrate the action of chicken tendons with my classes, I can usually find one tendon that causes each toe to curl, and another that causes the entire claw to close.)

Chicken Feet

Chicken Feet, with Exposed Tendons

So the chicken foot is like a marionette. It has these tendons running into it, and whenever something outside the foot pulls a tendon, the tendon pulls one or more of the toes and causes it to move. The hand apparently works the same way–the muscles in your forearm pull on the tendons, causing them to get tight and to pull on the finger on the other end. Your hand is like a puppet, and your forearm is the puppetmaster.

A Robot Finger

Each student can quite easily make a model that demonstrates this principle of operation. Break a popsicle stick into three pieces, then put them back together again and wrap scotch tape around the joints. Now you have a bendy stick, with the pieces representing the bones of the finger. (If you’ve talked about ligaments, you can point out that the tape represents the ligaments in the knuckles.) Next you have to install a tendon to make the finger move: Tape small pieces of a soda straw to the flat side of each section, being careful not to overlap the joints. Pass a piece of yarn through the straw segments and tape it to the back of the short section on the end (i.e. the “fingertip”.) Now when you pull on the yarn, it should make the stick curl. (The sections of straw are simply to hold the yarn against the stick, but even these have a rough analog in a real finger: tendon tunnels. The third straw on the fingertip is probably not necessary, but you shouldn’t just tape the yarn to the front of the stick. Unless you wrap it over the top and tape it to the back, it will pull out too easily.)

A Popsicle-Stick Finger

This entry was posted in Anatomy and tagged , , , , . Bookmark the permalink.

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s